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ABSTRACT

This paper presents for the first time an explicit calculation of
the dielectronic rate coefficients for seventeen neon-like ions rang-
ing from argon to tungsten using relativistic multi-configuration
wavefunctions to calculate both the Auger and radiative matrix
elements. The effect of electron collisions on the dielectronic rate
coefficient is also examined at several densities of interest for

modeling laboratory plasmas.
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1. Introduction

Dielectronic recombination is the dominant recombination process for ions
in high temperature low density plasmas|1] such as the solar corona. It is also a
significant contributor to plasma cooling in hot plasmas found in laboratory
fusion plasma experiments[2]. The calculation of the dielectronic rate coefficient

DR is difficult because of the many intermediate resonance states over which

a
the rate needs to be summed . We calculate a”® for recombination from the
neon-like ground state into the sodium-like non-autoionizing states via the 3131’
manifold for seventeen neon-like ions ranging from Ar*® to W*%4. This calcula-
tion uses accurate relativistic atomic wavefunctions calculated for each ion. This
1s the first calculation in which relativistic multi-configuration wavefunctions are
used to calculate the matrix elements explicitly for each of the doubly excited
states. Previous authors have calculated aP® using a simple angular momentum
averaged procedure{3] to average over as many intermediate states as possible or

have done a detailed calculation using single or few configuration non-relativistic

wave functions to calculate the relevant atomic data[4-6).

2. Method

In j-) coupling the 3I3I' manifold consists of 237 doubly excited states which
are connected to the neon-like ground state 1s225%2p% by the Auger process and

to the five sodium-like non-autoionizing states [KL]3s1/2,3p1ﬂ,3p3/2,3d3ﬂ,3d5ﬂ
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by radiative decay and electron collisional de-excitation. In addition the doubly
excited states are connected to each other by radiative decay and electron colli-

sional processes.

There are a total of 243 states in our model. Our first task was to calculate
the wavefunctions for each of these states using the code YODA, which we ran
on a CDC7600 computer. YODA is a relativistic multi-configuration Hartree-
Fock atomic physics code which uses as its orbital basis a set of single
configuration Dirac orbitals calculated in a spherically symmetric central poten-
tial which includes a finite nuclear potential. Racah algebra is used in calculat-
ing the angular momentum part of the matrix elements. Using these fixed orbi-
tals to construct the single configuration wavefunctions, the Hamiltonian matrix
is calculated including Breit corrections to the Coulomb interactions between the
electrons. Also included are the quantum electrodynamic effects such as self
energy(7] and vacuum polarization|8]. The Hamiltonian is diagonalized to give
the full multi-configuration wavefunctions in intermediate coupling. These

wavefunctions are then used to calculate the oscillator strengths for all the

dipole allowed transitions.

The continuum orbitals used in computing the Auger matrix elements were
calculated in a distorted wave approximation neglecting exchange. The potential
was a spherically averaged final state potential For this work, an ion in a
neon-like ground state would be used to calculate the potential. For the high Z
systems we are using, the neglect of the exchange term should be a small effect.
The free electron wavefunctions are used with the multi-configuration wavefunc-

tions for the bound electrons to calculate the Auger matrix elements.

Approximate collision cross sections are computed in the classical path
approximation[8] coupling dipole allowed states. These collision cross sections

are then approximated by the five parameter fit
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~b 3
<ov> =158x107° p(b) (;Wz) Ca'l‘c (1)
where
0F
b = N (2)
and
In(p(b)) = a0 + al In(b) + a2 In*(b) + a3 In3(b) . (3)

6F is the transition energy(in eV) used in fitting the data and 6=kT is the elec-
tron temperature(in eV). The free electrons of density n, are assumed to have a

Maxwell Boltzmann velocity distribution represented by a temperature T.

The components of the dielectronic recombination process are:
Dielectronic capture, Auger: X** + e— x*e-1) (ﬂ; 31, 3l3)
Stabilization: XY (21, 31, 31;) — XH"0(3l,) + hv
]

The neon-like ground state X** captures an electron to form a doubly excited
sodium-like state X**~1)(213137). The notation 20 represents a hole in the
neon-like core while 3131' represents the two n=3 electrons. The doubly excited
state can Auger decay or undergo a radiative decay(An = 1) to a sodium-like

non-autoionizing state which stabilizes the capture process.

In addition to the “direct” dielectronic recombination there are radiative
processes and (for finite density plasmas) collisional processes which can cause
angular momentum redistribution within the doubly excited states and colli-
sional de-excitation to the sodium-like non-autoionizing states which stabilize the

capture. These processes are shown below:
Radiative decay processes: X"'("‘)(2_ll 3l, 3l3) — X*("')(é_l; 3ly 3l3) + hv

X120 31, 315)— XH-0 2L, 31y 3ly) + h
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Collisional Ezcstation and De— ezcitation: X*‘"”(EE 3l, 3l3) + ¢ — XH-U(3L) + e
XH=O@RL 3, 3l5) + ¢ — XHU@I 31, 3ly) + ¢
XHDET 31, 3l) + ¢ — X203l 3l5) + ¢
All of the above processes are included in our calculation.

To calculate the population kinetics, let
N; = population of the neon-like ground state

N; = population of the doubly excited states ) = 1 to 237

Np = population of the sodium-like non-autoionizing states i = 1to 5
R, = rate coefficient for transitions from level a to level b
then
dN,
— = X N By — Ny YRy (4)
k k
dN; \
5 = N Rij = Nj|Rjy + Rjpi + %Rjk] + ZENL‘ Ry; ()
dNp.
5 = LN R (6)
k

We then calculate the populations of the doubly excited states using dynamic
relaxation to steady state. We assume the population of the neon-like ground
state is constant N, and that the populations of the sodium-like non-autoionizing

states are zero. Equation 5 is solved for N; by setting dN;/dt =0 and then

iterating on

N[")’Pl + ZNE R‘J'
k

N, = (7)
oAt +af +af + YRy
k

where '7,1-)’ = Ry; is the dielectronic capture rate which is calculated by detailed

balance from the Auger rate 4.
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- 4E,
B, gt —+

(2rm6)’/2 2g ¢

Pi8) = (8)

where

g; = degeneracy of the doubly excited state j

g; = degeneracy of the neon-like ground state

E; = energy of the doubly excited state )

E; = energy of the neon-like ground state

AE;, = E; - E,
The radiative decay rate 7? and the collisional de-excitation rate 7J-C stabilize
dielectronic capture by the An =1 transitions.

R C s
7ty = .'ER’F (9)

We define the total destruction rate 7? to be

WP =aF+4f+ R, (10)
P

where the last term is due to An = O transitions. The recombination rate is
then calculated by summing the flux of population from the doubly excited
states to the sodium-like non-autoionizing states.
237
PR = 3N b + 4] (1)
j=1

The dielectronic recombination rate coefficient a”F is defined by

aPR = —’ﬂ (12)

a R, Nl

The inclusion of the radiative decay rates for the An = 0 transitions

increases the rate coefficient by less than 3% for the range of ions we considered.



3. Results

We calculated the dielectronic rate coefficient aP® for the neon-like isoelec-
tronic sequence as a function of electron temperature for each of the seventeen
elements Ar, Fe, Cu, Ge, Kr, Zr, Nb, Mo, Ru, Rh, Ag, Sn, Xe, Nd, Ho, Ta, and
W at an electron density n, = 10 / cc. At this density, the effect of electron
collisions is negligible and can be neglected as we will show later. In figure 1 we
plot aP® versus @ for six of the elements. In table I we list the maximum value
of the dielectronic rate coefficient affy for each element and the value of 6, at
which oPF is maximum. Also listed is I*—J, the average energy lost by an electron

in each recombination. E is calculated by

ZAEJ'“JJ'
E=-—— (13)
i
]
where
DI.R
g iRl
w,- = —R, ! A (14)
Mt

We calculate w; at 6. The Y, is a fast numerical algorithm[10] to calculate
F

an approximate v°%. If we model dielectronic recombination via the 313I' mani-
fold as proceeding through one pseudo doubly excited state with AE = E then

we may fit the relativistic multi-configuration rate coefficient by

3
44817 affiy e ¥
oPR — : : = (15)
S 2F
22

where aP® is maximum at 6 = %E (Comparing E and 0y in table I, we see

that 8, =~ %E within 1% for all elements). Figure 2 shows aPR plotted versus ¢

for Nb demonstrating excellent agreement between the fit and the original data.
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The open circles are a result of the detailed calculation while the solid line
represents the fit of equation 15. Agreement is better that 19 over the range of
.5 < x < 5. In general, this fit is good to 4% over the same range of x for all
the ions calculated. At low temperatures, the fit underestimates aP® because the
detailed system has lower energy states which become more heavily weighted,

therefore E is no longer the appropriate energy to use for the pseudo state.

Figure 3 plots affiy versus Z{the bare nuclear charge) for this
calculation(open circles) and the Burgess-Merts[2,11] formula(solid line). We
note that our calculation for the dielectronic recombination rate peaks at
Niobium(Z = 41) while the Burgess-Merts formula peaks at Al. The Burgess-

Merts formula used is

-AE
- ! 3
oPR = 2395 x 107° —Bi.i)-— Jij Alz) e 8 L8 (16)
0*2(ineV) sec
with z = Z - 10 = charge number of the recombining ion and
12(2 + 1)°/2
B(z) = 2 17
(2) (22 + 13.4)\/2 (17)
5 z1/2
A(z) = 18
(z) 1 + 210z + .0302° 8)
AE; = 888, Lt - L (19)
a n nf
01528
=] 4 ————— 20
‘ (z + 1) (20)
1 1
z=(z+1)= - — 21
{ N o7 n},) (21)

with E,- the average absorption oscillator strength for the 21 to 3l radiative sta-
bilizing transition. We use T= 6412, n; = 2 and n; = 3. We calculate AE;

and then use § = 24E;/3 to calculate the maximum value of aP® for the

Burgess-Merts formula.
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Collisions can have an effect on aPR by redistributing the population of the
doubly excited states among the different angular momentum states of the 313l
manifold, especially the higher angular momentum states. It can also act as a
collisional stabilization process by collisionally de-exciting a 3! state to a 21 state.
The latter process is very slow, however, except at very high electron densities.
In figure 4 we plot aP®(6=6;) versus n, for four peon-like ions spanning the
range of Z we have considered. a”® is normalized to unity for n, = 1014 As

one might expect, the effect is largest for low Z.

To show the relative effects of angular momentum redistribution (4n = 0)
and collisional de-excitation(An = 1) on the net dielectronic recombination rate
coefficient we plot in figure 5 o”F (at @ = ;) for argon versus electron density
with(solid line) and without(dotted line) collisional de-excitation included in the
calculation. Without collisional de-excitation a”® reached a maximum around
n, = 10*' and saturates. This saturation occurs when the collisional rates
between the 3131' states dominates the Auger and radiative rates. The 3I3I
states are then in a thermal equilibrium with their relative populations deter-
mined by a Boltzmann distribution at the electron temperature. Any further
increase in the collision rates(An = 0) will not affect the population distribution
since the states are already in local equilibrium. Also, heavy particle colli-
sions[12] can contribute to the angular momentum redistribution especially at

high temperatures for very small energy transitions.

As n, continues to increase, collisional de-excitation(An = 1) becomes dom-
inant over radiative decay in increasing the destruction rate of the doubly
excited states. Thus collisions effectively increase the branching ratio for dielec-
tronic capture. As the electron density becomes high enough this effect will also
saturate as the branching ratio reaches unity. It should be pointed out, of

course, that at these high values of n, collisional excitation from the sodium-like
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non-autoionizing states(which do have a finite population) will cause a reverse

flow and counterbalance the dielectronic recombination.

Finally, the dielectronic rate coefficient we have calculated is only a partial
rate coefficient. Accurate calculations of the rate coefficient must include princi-
pal quantum numbers up to a limit dictated by plasma ionization. We are
currently calculating the contributions of the nln'l’ manifolds for n,n’ > 3. Con-
vergence of the calculated rates is expected to be fairly rapid for high Z ions,
such as tungsten, for two reasons. First, calculations using the 313I' manifold for
tungsten show that the bulk of the dielectronic recombination flux proceeds
through a reasonably small number of channels. Secondly, due to jj coupling,
each multiconfiguration wave function used to calculate matrix elements is very
pure in one single configuration wavefunction for the high Z ions. In this case,
the use of single configuration wavefunctions should be a very good approxima-
tion and extension of the dielectronic rate coefficient to high n values can be
accomplished quite accurately by semianalytic formulation. Convergence of the
low Z cases, on the other hand, is complicated by the necessity of including vir-
tually all of the 3131’ states to obtain reasonable accuracy.(The results reported
here include all states for each calculation.) However, including principal quan-
tum numbers above n=4 will require compromise due to the large number of
states for these manifolds. Despite a lower plasma ionization principal quantum
number for low Z ions, computation of converged dielectronic rate coefficients
for these elements becomes very difficult because of the necessity of retaining

virtually every state of the doubly excited manifolds.

The authors would like to thank Rosemary Jung for her invaluable assis-
tance in organizing the computer coding which makes up YODA. The authors

would also like to thank L. R. Roszman and S. M. Younger for many useful

suggestions.
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Table 1

Z 8yfin eV) alR (107 em®/sec) E(in eV)
18 124 265 186.5
26 257 825 385.6
29 314 1.109 471.6
32 380 1.235 569.8
36 474 1.382 711.0
40 576 1.489 864.3
11 602 1.495 903.4
42 632 1.488 948.4
44 692 1.470 1037.8
45 724 1.451 1085.3
47 788 1.441 1181.4
50 885 1.423 1326.9
o4 1023 1.389 1533.6
60 1257 1.178 1881.4
67 1556 1.009 2327.5
73 1844 865 2752.4
74 1881 845 2806.5
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Figure 1 Dielectronic rate coefficient o™ versus electron temperature for six

neon-like ions.
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Figure 2 Dielectronic rate coefficient o™ versus electron temperature for

neon-like niobium. The circles are the result of this calculation

while the solid line is the theoretical it of equation 15.
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The maximum value of the dielectronic rate coefficient oP* versus
the bare nuclear charge Z for seventeen neon-like ions. The open
circles are a result of this calculation while the solid line is calcu-

lated from the Burgess-Merts formula.
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Figure 4 Dielectronic rate coefficient o”* (9,) versus electron density for

several neon-like ions. The curves are normalized to unity at

a, = 10,
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Figure 5 Dielectronic rate coefficient o (0,) versus electron density

with(solid line) and without{dashed line) electron collisional de-

excitation(4n = 1) for neon-like argon.



